Biomechanics and Modeling of Skeletal Soft Tissues

نویسندگان

  • Rami K Korhonen
  • Simo Saarakkala
چکیده

1.1 Articular cartilage Articular cartilage is a specialized connective tissue that covers the ends of the bones in the diarthrodial joints. The thickness of human articular cartilage is typically between 1-6 mm. The main functions of articular cartilage are to dissipate and distribute contact stresses during joint loading, and to provide almost frictionless articulation in diarthrodial joints. In order to accomplish these demanding tasks, articular cartilage has unique mechanical properties. The tissue is a biphasic material with an anisotropic and nonlinear mechanical behaviour. Articular cartilage is composed of two distinct phases. Fluid phase of the cartilage tissue consists of interstitial water and mobile ions. The water phase constitutes 68-85 % of the cartilage total weight and is an important determinant of the biomechanical properties of the tissue. Solid phase (or solid matrix) of the cartilage tissue consists mainly of collagen fibrils and negatively charged proteoglycans. The cell density is relatively small – in human adult tissue only ~2% of the total cartilage volume is occupied by the chondrocytes. Collagen molecules constitute 60-80% of the cartilage dry weight or approximately 10-20% of the wet weight. The collagen molecules assemble to form small fibrils and larger fibers that vary in organization and dimensions as a function of cartilage depth. The diameter of collagen fibers is approximately 20 nm in the superficial zone and 70-120 nm in the deep zone, and it varies between different collagen types. The collagen fibrils of the cartilage tissue consist mainly of type II collagen, although small amounts of other collagen types can be also found in cartilage, e.g. collagen type VI is common form in the vicinity of cells (pericellular matrix). In addition to the collagen fibrils, proteoglycan macromolecules constitute 20-40% of the cartilage dry weight or approximately 5-10% of the wet weight. The proteoglycan aggrecan is composed of a protein core and numerous glycosaminoglycan (GAG) chains attached to the core. Many aggrecan molecules are further bound to a single hyaluronan chain to form a proteoglycan aggregate. The basic structure of the articular cartilage can be divided into four zones based on the arrangement of collagen fibril network (Benninghoff, 1925): 1) Superficial zone: here the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair.

A number of mechano-regulation theories have been proposed that relate the differentiation pathway of mesenchymal stem cells (MSCs) to their local biomechanical environment. During spontaneous repair processes in skeletal tissues, the organisation of the extracellular matrix is a key determinant of its mechanical fitness. In this paper, we extend the mechano-regulation theory proposed by Prende...

متن کامل

FNAC of Extra-Skeletal Ewing’s Sarcoma of the Parotid Gland

  Extra-skeletal Ewing’s sarcoma is a rare soft tissue malignant neoplasm, morphologically indistinguishable from skeletal Ewing’s sarcoma. The usual sites of involvement are the soft tissues of para-vertebral region, chest wall, and lower extremity. Extra-skeletal Ewing’s sarcoma is rare in the head and neck region and very few cases are reported in the parotid gland. The cytological features...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

Identification of the material parameters of soft tissues in the compressed leg.

Elastic compression is recommended in prophylaxis and the treatment of venous disorder of the human leg. However, the mechanisms of compression are not completely understood and the response of internal tissues to the external pressure is partially unknown. To address this later issue, a 3D FE model of a human leg is developed. The geometry is derived from 3D CT scans. The FE model is made up o...

متن کامل

Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and ru...

متن کامل

Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (ske...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012